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Robust Parameter Design for Profile Quality
Control
Lulu Bao,a Qiang Huangb and Kaibo Wanga*
In certain manufacturing processes, product quality is characterized by spatial profiles, and such profiles are expected to
meet specific shape requirements. As profile shapes are affected by process conditions, properly adjusted process variables
are expected to help improve profile quality. This work aims to achieve desired shapes of profiles that are sensitive to the
variation of noise factors through optimizing settings of controllable factors. A hierarchical model is first built to characterize
the spatial correlation of measurement points on a profile and link quality metrics with process variables. The process is then
optimized using the robust parameter design technique. The performance of the proposed method is studied using a
motivating example from nanomanufacturing. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

D
ue to the advancement of sensing and metrology techniques, large quantities of data can be collected during production or
quality inspection within a short time at a low cost. When data are collected at multiple gauge points on a product, a spatial
profile is naturally formed. The variability across such a profile is crucial for those products that are desired to achieve a specific

shape and must be controlled to meet quality target.
As a motivating example, we study a nanomanufacturing process that produces carbon nanotube (CNT) arrays in this paper. CNT

arrays are expected to grow uniformly on wafer substrates. However, due to the physical structure the production facility has, real CNT
arrays usually deviate from the ideal profile to a bowl shape, as shown in Figure 1. Such a deviation will lead to both quality and cost
issues in downstream-manufacturing stages. In the current industrial practice, aggregated quality metrics are usually used to
characterize product quality and provide information for process improvement. For example, the average height of nanotubes is
commonly used by engineers as one objective to determine the growth time. However, aggregated metrics have obviously ignored
the spatial variability a nanotube array has and are therefore ineffective if being utilized in quality control. Instead, the spatial profile
obtained from product inspection conserves more information of variability1 and could be considered for quality control.

The idea of using profiles to characterize product quality has been extensively studied in the literature on statistical process
monitoring.2–8 However, research that addresses issues of process control for improving profiles quality is still limited. As profiles
are important quality metrics and usually have specific requirements, quality engineers also want to control the geometric properties
of profiles by adjusting controllable process variables.

To control profile quality, the first issue is to identify process variables that potentially affect profile shapes. Some real
manufacturing processes have provided such examples in which process variables have an impact on the geometric features of
profiles. For instance, the cutting speed and the depth of cut in a lathe-tuning process of a titanium alloy affect profiles’ roundness.9

There is also literature analyzing the effect of process variables on shapes of curves.2,10–12

Once influential factors are identified in a process, the next step is to seek appropriate settings for the controllable factors to
optimize process output and improve product quality. In recent years, there has been a wide spectrum of research performed on
robust parameter design for functional responses, which could be seen as a special type of profiles. A natural approach in robust
parameter design study for profile data is the extension of conventional location-dispersion modeling method. To use this method,
statistical models should be built to link the mean, variance,13 and even spatial dependence14 of measurements at gauge points, to
process variables; then, the optimal settings for controllable factors can be obtained. Although the location-dispersion modeling
approach is easy to use, it has a drawback that interactions of controllable factors and noise factors are not reflected in the model.
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Figure 1. The three-dimensional (3D) plot of a carbon nanotube (CNT) array.
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The signal-to-noise ratio approach is a mutation of the location-dispersion method, which combines mean and variance
together.15 The signal-to-noise ratio serves as an objective function and a metric of profiles’ uniformity.16 Similar to the location-
dispersion modeling approach, the signal-to-noise technique uses a two-step approach to solve the objective function. Due to
limitations of the signal-to-noise ratio on fitting practical situations and mixing location effects and dispersion effects, it is not
recommended to use this technique in process parameter design problems.17

Response modeling is a commonly used approach of robust parameter design. Responses are linked to process variables via a
regression model, which contains interactions of controllable factors and noise factors. Then, the controllable factors are set by
solving an objective function, which is defined by combining target deviation and variance of profiles.18 Another common approach
is the Bayesian approach, proposed by Peterson,19 which emphasizes spatial correlation of responses and uncertainty of parameter
estimates. The posterior probability of achieving a desired shape is maximized when there are noise factors.

Recently, hierarchical approaches are proposed on the basis of the aforementioned methods for robust design of profiles. Nair and
Taam13 proposed a two-stage modeling approach that is a variation of the response modeling method. Del Castillo and Colosimo20

proposed a hierarchical version of the Bayesian approach. A hierarchical approach usually contains two stages: in the first stage,
quality responses of profiles are modeled as a function of locations; then, the second stage model links coefficients generated in
stage 1 to process variables. Hierarchical approaches have priorities over non-hierarchical models due to their interpretability.11

The coefficients in stage 1 usually have clear geometric meaning, which is directly related to the shapes of profiles. The models in
stage 2 indicate that we can control the shape of profiles by choosing appropriate settings of controllable process variables.

For spatial profiles such as the CNT arrays studied in this paper, within-profile correlation is usually strong and cannot be
neglected.21 However, current profile modeling approaches often leave out spatial correlation. Naturally, the spatial correlation is
not involved during optimization procedures of robust parameter design. A major reason is that it is a computation consumed to
estimate parameters in a complex covariance matrix when the number of locations is large.3 We will address this issue in greater
details in the next section.

The aim of this work is to propose a robust parameter design method for controlling profile shapes. The proposed method will help
achieve a desired shape of profiles that is tolerant to variations of noise factors by optimizing settings of controllable factors.
Compared with the existing work on robust parameter design or functional response analysis, the major contribution of this work
is twofolded. First, a hierarchical model, which takes the spatial correlation of measurement points into consideration using the
Kriging technique, is proposed to characterize profiles and link profiles with process variables for control purpose; second, the robust
parameter design methodology is integrated with the hierarchical model to improve profile quality through off-line optimization. The
proposed model is effective even if the number of locations is large or the number of locations varies within profiles.

The rest of this paper is organized as follows. The hierarchical model of profiles is described in the next section, followed by the
robust parameter design to obtain optimal controllable factor settings. In section 4, the motivating application from
nanomanufacturing is revisited to illustrate and evaluate the performance of the proposed method. Section 5 concludes this work
with suggestions for future research.
2. Hierarchical modeling for profiles

To improve CNT array quality, in this section, we first build a hierarchical model to characterize profile quality and link critical quality
metrics with process variables. The hierarchical model contains two stages: stage 1 connects responses to locations of gauge points
on the profiles and stage 2 links coefficients in stage 1 to process variables. Based on this hierarchical model, process variables will be
optimized in the next section to improve product quality.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1059–1070
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Assume that there are mi points on the i-th profile, where i= 1,…,N. The j-th point on profile i, where j=1,…,mi, is recorded at
location sij, and the corresponding response is yij. For i= 1,…,N, a two-stage hierarchical model for the profiles is given by

Stage 1:

yi ¼ Siθi þ zi þ εi (1)

Stage 2:

θi ¼ B�f xi;ui; ei;nið Þ þ vi (2)

In stage 1, the responses are modeled as a function of locations. In this model, yi ¼ y1…; ymi

� �T
is a mi×1 vector representing the

responses on the i-th profile, θi is a p× 1 coefficients vector of stage 1 relating to the shape of profiles, Si is ami× p regressor matrix of

which the elements are functions of the locations of gage points, zi ¼ zi1…; zimið ÞT is a vector following a Gaussian–Kriging process
and characterizing spatial correlation of the gauge points, and εi is a white noise vector following a multivariate normal distribution.
The response is decomposed into a global trend and local details that are modeled by a linear model and a Gaussian process,
respectively. This is known as a universal Kriging model where global trend is not negligible because parameters in the global trend
model may indicate some principal geometric features. Universal Kriging is frequently used in current literature. For example, Ba and
Joseph12 decompose responses into smooth global trend and local details and model them with two Gaussian processes separately.
As another example, Plumlee and Jin8 also use universal Kriging to build models.

In stage 2, the coefficient vector in stage 1 is linked to process variables. In Equation (2),B is a p× (q+1) coefficientmatrix, f(xi,ui,ei,ni) is
a vector consisting of functions of the process variables, and vi is a noise vector that follows a multivariate normal distribution Np(0,Σv).
Huang22 uses a similar hierarchical approach that contains a term to characterize spatial correlation to model the length of nanowires. The
difference is that the noise factors are not considered in the model because it is not for robust parameter design.

Similar to the method that Zhong et al.23 used to optimize the process variables, this paper classifies the process variables being
considered in Equation (2) into four categories: off-line setting factors, xi; online controllable factors, ui; measurable noise factors, ei;
and unobservable noise factors, ni. The process variable vector f(xi,ui, ei,ni) is often defined as

xi
T ; ui

T ; ei
T ; ni

T ; xi
T⊗ei

T ; xi
T⊗ni

T ;ui
T⊗ei

T ; ui
T⊗ni

T
� �T

where ⊗ is the Kronecker product. Then, the k-th element of θi in Equation (2) can be expressed as the function of factors from the four
categories:

θik ¼ βk0 þ βTk1xþ βTk2uþ βTk3eþ βTk4nþ xTBk1eþ uTBk2eþ xTBk3nþ uTBk4nþ vik (3)

The coefficient matrix B is given by

β10 βT01 βT02 βT03 βT04 vec B01ð Þð ÞT vec B02ð Þð ÞT vec B03ð Þð ÞT vec B04ð Þð ÞT
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

βp0 βTp1 βTp2 βTp3 βTp4 vec Bp1

� �� �T
vec Bp2

� �� �T
vec Bp3

� �� �T
vec Bp4

� �� �T
0
B@

1
CA

One important feature of the proposed hierarchical model is that we take spatial correlation among gauge points into account and
characterize the correlation with the Kriging technique. In the literature, spatial correlation has been highlighted in many studies
related to profiles such as profile modeling,24–26 profile monitoring,27,28 profile optimization,29 and profile control.1 As profile data
are measured at different but adjacent locations, the data usually exhibit certain spatial correlation. Therefore, a model that considers
the spatial correlation among all measurement locations usually has better performance in estimation and prediction of profile
variations.30 However, such within-profile correlation is often neglected in robust parameter design study of profiles because of
the computation difficulty resulted from a large and complex covariance matrix, as we mentioned before. Some techniques can
resolve this problem through simplification of covariance structures. For instance, Del Castillo and Colosimo20 use a random effects
term Sivi (in our notation) to model the within-profile correlation and then select part of f(xi,ui, ei,ni) ’⊗ Si to replace Si to simplify
the covariance structure. We use Kriging technique to model the within-profile correlation, and it is more intuitive and easier to
interpret than the random effects technique.

Kriging is the most widely used technique to model spatial correlation and has been extensively studied in spatial statistics21

and computer experiments.31 The Kriging technique has been applied to model the correlation structure of profile responses.32,33

In the proposed hierarchical model, we use the commonly used Gaussian process structure in Kriging analysis to characterize the

correlation among the multiple responses; in Equation (1), zi ¼ zi1…; zimið ÞT is assumed to follow a multivariate Gaussian
distribution with

E zið Þ ¼ 0

Cov zi; zj
� � ¼ σ2z R δ; si � sj

� � (4)

where σ2z is the variance of the process and R(�) is a pre-specified correlation that controls the smoothing of zi. Commonly used
correlation structures include exponential, Matern, and Gaussian correlation function.34 A proper correlation function should be
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1059–1070
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chosen based on data and specific applications. By specifying the correlation structure using Kriging technique, the parameters to be
estimated in the covariance matrix is significantly reduced, and thus the model work even if there is a large number of locations.
3. Robust parameter design

In the previous section, we propose a hierarchical model for profiles to link responses to process variables. The main task of this
section is to find appropriate settings for controllable factors such that the output product quality is insensitive to variations caused
by noise factors. To formulate this target as an optimization problem, we must define an objective function.

Khuri and Conlon,35 Ames et al.,36 and Murphy et al.37 studied different types of loss functions. Among them, one of the most
commonly used loss function is a multivariate quadratic loss function, which is defined as

E y� τð ÞTA y� τð Þ
h i

(5)

where A is a weight matrix and τ is a target vector of responses. The loss function in Equation (5) measures deviation between responses
and the target value. There are two main advantages for the multivariate quadratic loss function: one advantage is that correlation among
responses is incorporated in optimization procedures and the other advantage is that both the off-target penalty and variance are
considered during the optimization.

The multivariate quadratic loss function is applicable to our problem because spatial correlation among the responses is
emphasized and we aim to achieve a desired shape with small variation. Therefore, similar to the loss function in Equation (5), we
define the loss function as follows

O x;uð Þ ¼ Ee;n;z;v;ε ∑
N

i¼1∑
mi

j¼1 yij � τij
� �2

� �
(6)

where τij is the target value of the profile i at point sij. Differing from the loss function given in Equation (5), the weight matrix A is set
as an identity matrix because we believe that all the gauge points are equally important and that there is no additional cost resulting
from the simultaneous target deviation of pairs of responses. Thus, we can simply write the loss function as an additive combination
of responses, as shown in Equation (6). By minimizing the objective function in Equation (6), the optimal settings of controllable
factors are derived to make the profile remain close to the desired shape and insensitive to the variation of noise factors. The
procedures of optimization will be illustrated with an example in the next section.
4. Case study and discussion

We now revisit the nanomanufacturing process for producing CNT arrays. The CNT arrays in this example were grown on silicon
wafers using the chemical-vapor deposition (CVD) method.38 In industrial practice, the nanotubes are expected to meet a specific
target height and be uniform in height. It is easily learned from engineering knowledge that the height of the nanotubes is related
to process variables such as the partial pressure of the precursor and the temperature of the reaction.39 The purpose of this study is
therefore seeking opportunities to improve the process output by optimizing the controllable factors.

Through the statistical analysis of measurements of 60 CNT arrays collected from the manufacturing process, it is confirmed
that significant interactions between an observable but uncontrollable factor and some controllable factors do exist. There are
eleven factors in the process. Two factors among them are observable noise factors, and the remaining nine factors are
controllable factors. We distinguish four factors that have significant effects on the height of nanotubes from these factors and
name them as factors A, B, C, and D for confidentiality. Among them, factor D is an observable but uncontrollable factor and
has interactions with the off-line controllable factors B and C. This provides an opportunity to reduce the variation transmitted
from the observable factor by selecting proper settings of the controllable factors. Therefore, we can apply the proposed method
to improve the quality of nanotubes. In the following, we first analyze the real dataset of nanotubes and build a hierarchical
model then apply robust parameter design to acquire the optimal set values for the controllable factors. Finally, the performance
of the proposed method will be studied.
4.1. Data analysis and hierarchical modeling

For quality characterization purpose, a metrology equipment scans nanotube arrays line by line, with multiple gauge points on each
line, thus forming a spatial profile. As all measurement lines share a similar trend, for demonstration purpose, we choose the central
measurement line, which contains the most points (i.e., the most information), as our objective profile. Figure 2 shows the central
line’s height plot of an example nanotube array. If all measurement lines were considered and the complete two-dimensional
bowl-shape profile is defined as the objective profile, the model presented in Equation (1) was still valid except a modification to
the trend term and parameter vector, but the problem formulation and all results obtained in this work still hold.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1059–1070



Figure 2. The height profile of nanotubes along the central line of a nanotube array.
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The CNT arrays have some important features. First, the nanotube arrays usually exhibit a bowl shape with higher height close to
the edges and lower height in the central area, as shown in Figures 1 and 2. Second, there are some abnormal nanotubes on the edge
of the arrays resulted by non-uniform catalyst films on the edges. We eliminate these outliers before building the model, as those
nanotubes are produced because of irregular catalyst distribution near the edge area and cannot be changed by adjusting factors
of the CVD process. Third, the nanotube arrays are usually asymmetric because of the inhomogeneous exposure to reactant gasses
in the CVD process, as Figure 2 shows.

Considering the features of the profiles, the following model was constructed:
Stage 1:

yij ¼ μij þ zij þ εij

μij ¼
ai1sij2 þ ci sij < 0

� �
ai2sij2 þ ci sij ≥0

� �
(

(7)

Stage 2:

θi ¼
ai1

ai2

ci

0
B@

1
CA ¼

β10 β11 ⋯ β16
β20 β21 ⋯ β26
β30 β31 ⋯ β36

0
B@

1
CA 1; A; B; C; D; BD; CDð ÞT þ vi (8)

where yij is the height of the nanotube at location sij on the ith profile (i.e., the response). Due to the asymmetry of profiles, models
were fit to the left region and the right region separately. The four factors and their interactions deemed to have significant effects on
the responses are contained in the model.

Universal Kriging is used to model the height of nanotubes. The height is the sum of a regression model and a Gaussian process.
The nanotube arrays usually show a bowl shape because of their growth mechanism. Therefore, a quadratic model is used to
characterize the global trend shared by CNT arrays. Nanotubes’ position on wafer substrates has a significant impact on their height.
Given coordinates of nanotubes, we can acquire much information on their heights. The coefficients vector θi is related to locations
and has specific geometric meaning, where ai1 and ai2 represent the variation scale of the nanotubes on the left and on the right,
respectively, and ci is the height of the nanotube at the center of profile i. This specific pattern will be hidden if we use ordinary
Kriging because all the variation is represented using a Gaussian process. To capture this pattern, we treat the common trend as
the large scale variation and use Kriging to characterize the small scale variation of each nanotube array.

Owing to the lack of theoretical and experimental support in our case, parameters of Kriging are not contained in the second stage
model. The second stage model is built based on the current physical knowledge we have and the geometrical features of nanotube
arrays we observe. The relationship between Kriging parameters and process factors is difficult to model. But sometimes, the small
scale features may be affected by noise factors and controllable factors. If a convincing model can be built to characterize the
relationships between Kriging parameters and process variables, it will be better to add Kriging parameters into the responses of
second stage model. For example, Plumlee and Jin8 model parameters of Gaussian process as a linear function of process factors
and show that this kind of model better explains the model.

The vector of off-line controllable factors is x= (A, B, C)T, and the vector of observable factors is e=D. To remain consistent with the
symbols in Section 2, we still use e to represent the vector of the observable factors. Combining Equations (7) and (8), we can rewrite
two separate height models for nanotubes on the left and right sides of the center point as follows.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1059–1070
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When sij< 0, the height is given by

yij ¼ β30 þ β31Aþ β32Bþ β33C þ β34Dþ β35BDþ vi3ð Þ
þ β10 þ β12Bþ β13C þ β14Dþ β16CDþ vi1ð Þsij2 þ zij þ εij

¼ β30 þ βT31xþ βT33eþ xTB31eþ vi3
� �þ β10 þ βT11xþ βT13eþ xTB11eþ vi1

� �
sij2 þ zij þ εij

When sij ≥ 0, the height is governed by

yij ¼ β30 þ β31Aþ β32Bþ β33C þ β34Dþ β35BDþ vi3ð Þ
þ β20 þ β22Bþ β23C þ β24Dþ β26CDþ vi2ð Þsij2 þ zij þ εij

¼ β30 þ βT32xþ βT32eþ xTB32eþ vi3
� �þ β20 þ βT21xþ βT23eþ xTB21eþ vi2

� �
sij2 þ zij þ εij

The coefficient matrix in Equation (8) is estimated, and the result is shown in Equation (9).

B̂ ¼
�2:12E � 04 0 1:45E � 04 6:40E � 09 6:21E � 08 0 �4:19E � 11

�6:33E � 05 0 4:61E � 05 9:16E � 10 1:62E � 08 0 �8:56E � 12

12:1 0:0588 �8:45 4:01E � 05 �0:149 0:106 0

0
B@

1
CA (9)

4.2. Robust parameter design of nanotubes

From historical data, we found that the observable factor D follows a normal distribution with mean 130 and standard deviation 40.
The target height of the nanotubes is 0.3. Due to the asymmetry of profiles, the objective function in Equation (6) is rewritten as

O xð Þ ¼∑N

i¼1∑j; si < 0 Ee;z;v;ε yij

� �
� τ

h i2
þ Vare;z;v;ε yij

� �� 	

þ∑N

i¼1∑j; sj ≥ 0 Ee;z;v;ε yij

� �
� τ

h i2
þ Vare;z;v;ε yij

� �� 	 (10)

where τ is the target height of the nanotubes. The loss function guarantees that the nanotubes achieve the target height and remain
uniform simultaneously.

By minimizing the objective function in Equation (10), we can obtain the optimal settings of controllable factors. For simplification,
we denote that

γ ijð Þ
10 ¼ β̂30 þ β̂10sij

2; γ ijð Þ
13 ¼ β̂33 þ β̂13sij

2; γ ijð Þ
11 ¼ β̂31 þ β̂11sij

2; G ijð Þ
1 ¼ B̂31 þ B̂11sij2

γ ijð Þ
20 ¼ β̂30 þ β̂20sij

2; γ ijð Þ
23 ¼ β̂33 þ β̂23sij

2; γ ijð Þ
21 ¼ β̂31 þ β̂21sij

2; and G ijð Þ
2 ¼ B̂31 þ B̂21sij2

Then, the loss function in Equation (10) can be expressed as

O xð Þ ¼∑N

i¼1∑j; si <0

�
γ ijð Þ
10 þ γ ijð Þ

11

� �T
xþ γ ijð Þ

13

� �T
μe þ xTG ijð Þ

1 μe � τ
� �2

þ γ ijð Þ
13 þ G ijð Þ

1

� �T
x

� �T
Σe γ ijð Þ

13 þ G ijð Þ
1

� �T
x

� �
þ
�
sij2 0 1

�
Σvi sij2 0 1

� �T
þ σz2 þ σε2

	

þ∑N

i¼1∑j; sj ≥ 0

�
γ ijð Þ
20 þ γ ijð Þ

21

� �T
xþ γ ijð Þ

23

� �T
μe þ xTG ijð Þ

2 μe � τ
� �2

þ γ ijð Þ
23 þ G ijð Þ

2

� �T
x

� �T
Σe γ ijð Þ

23 þ G ijð Þ
2

� �T
x

� �
þ
�
0 sij2 1

�
Σvi 0 sij2 1

� �T
þ σz2 þ σε2

	
(11)

Forcing the differential of the objective function in Equation (12) to 0, we can obtain the solution to the optimization problem,

x ¼ � ∑N

i¼1∑j; si<0A
ijð Þ
1 þ∑N

i¼1∑j; sj ≥ 0A
ijð Þ
2


 ��1

� ∑N

i¼1∑j; si < 0d
ijð Þ
1 þ∑N

i¼1∑j; sj ≥ 0d
ijð Þ
2


 �
(12)

where

A ijð Þ
k ¼ γ ijð Þ

k1 þ G ijð Þ
k μe

� �
γ ijð Þ
k1 þ G ijð Þ

k μe

� �T þ G ijð Þ
k Σe G ijð Þ

k

� �T
and

d ijð Þ
k ¼ γ ijð Þ

k1 þ γ ijð Þ
k1 μe

� �
γ ijð Þ
k0 þ γ ijð Þ

k3

� �T
μe � τ


 �
þ G ijð Þ

k Σeγ
ijð Þ
k3

Finally, using the real data collected from the CNT array process, we derived the optimal settings of controllable factors as
(A, B, C) = (0.70040, 1.4101, 1136.4).
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1059–1070
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It should be noted that the proposed method could be applied to general process models with both off-line controllable factors
and observable noise factors. The detailed procedure for minimizing the objective function with a general process model is given in
the Appendix. In the cases where dataset is small or noise is large, uncertainties of parameter estimates should not be neglected. On
account of the hierarchical structure of the model, the estimation uncertainties of stage 1 parameters will transfer to stage 2. For the
i-th profile, the best linear unbiased estimator of θi; also, the generalized least squares estimator is

θ̂ i ¼ Si
TΣ�1

i Si
� ��1

Si
TΣ�1

i yi

where Σi ¼ σ2ziRi þ σε2I and Ri is a pre-specified correlation matrix. The variance matrix of the estimator is

var θ̂ i

� � ¼ Si
TΣ�1

i Si
� ��1

This estimation uncertainty of θi can be addressed in the second stage model

θi ¼ B�f xi;ui; ei;nið Þ þ vi

where vi is a noise vector that follows a multivariate normal distributionNp 0;Σvið Þ. Therefore, if we setΣvi ¼ var θ̂ i

� �
, the uncertainty of

θ̂ i is included in the model. In this way, the uncertainty of parameter estimation in stage 1 propagates to the next stage, and then
variance of B̂ in stage 2 can be estimated. To take estimation uncertainties into account, we use O x;u B̂Þ���

as the new objective
function. By minimizing this loss function, we can find the optimal control factors’ setting that is robust to noise factors and estimation
uncertainties of parameters.
4.3. Sensitivity analysis

In the following, we treat the estimated coefficients in Equation (9) as the true parameter values of the process and apply the
controllable factor settings obtained through the proposed robust design method to the process. Through the sensitivity study in
the succeeding texts, we can analyze the behavior of the objective function around the optimal solutions and can evaluate the
optimality of our solution intuitively.

We generate height data of nanotubes to test whether the optimal settings obtained from our algorithm are optimal compared to
other controllable factor values. Because factor A has no interaction with factor D (i.e., settings of factor A do not impact the variation
transmitted from factor D to the process output), we only analyze factors B and C.

Fixing factor C at the optimal setting that we obtained using the proposed method, we study the effect of factor B on the process
output by moving this factor to values different from its optimal setting. At each setting of factor B, we generate height data of 100
profiles, which are produced under 100 different values of factor D. The values of factor D are randomly generated in accordance with
a normal distribution N(130, 402). We take the nanotube grown at the center of the profiles with location sij= 0 as an example.
Computation results of the central nanotube from 100 profiles are shown in Table I.

In Table I, the target deviation is defined as∑N
i¼1 ysij¼0 � τ

� �2
; N ¼ 100. The column coverage percentage of (0.25 and 0.35) shows

the percentage of nanotubes with height between 0.25 and 0.35, which is defined as the target value plus/minus the standard
deviation. The starred row indicates that factor B is set to its optimal setting.

The numerical result in Table I shows that the optimal set value of factor B that we obtain from the proposed method is the best
among all the given settings, yielding the lowest target deviation and smallest variance. The result can be seen intuitively from Figure 3.
Figure 3 shows the effect of the controllable factor B on the distribution of the height of the nanotube at the center of the profiles. The
horizontal axis represents different settings of factor B, in which the setting marked with a red dotted line is the optimal value obtained
by our method. Above the horizontal axis shows the distribution of the observable factor D. The distributions of factor D are the same
for all the settings of factor B. The vertical axis of Figure 3 shows the distribution of the heights at the center point of the profile. It can
be seen that the variance of responses at the optimal controllable setting is the smallest and the average height is closest to the target.

Using the same process, we study the effect of factor C on the process output by fixing factor B at the optimal setting we obtained
using the proposed method. We also generate data of 100 profiles at each setting of factor C to compare their performance. Here, we
Table I. Study of the effect of factor B

Factor B Average height Standard deviation (SD) Target deviation
Coverage percentage of

(0.25 and 0.35)

1.4000 0.23358 0.04064 0.60464 32%
1.4050 0.26422 0.02103 0.60464 76%
1.4100 0.29485 0.00141 0.00285 100%
1.4101* 0.29562* 0.00092* 0.00200* 100%*
1.4150 0.32548 0.01820 0.09773 90%
1.4200 0.35612 0.03781 0.45647 47%
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Figure 3. The effect of factor B on the distribution of the height at center points.
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study all the nanotubes on a profile. There are M=91 gage points on a profile with coordinate ranging from �90 to 90 and step
length 2.

The definitions of performance metrics in Table II are similar to those in Table I. The difference is that the object of study in
Table II is the average height of a nanotube profile, while that in Table I is the height of the central nanotube. Table II shows
the result of different settings of factor C. The optimal set value of factor C obtained through the proposed method still has a small
standard deviation and an on-target average height. Although the average height at set value 1100 is closest to target among all
the set values, the corresponding variance is larger than that of the optimal setting. Similarly, the average height at set value 1200
has the smallest among all the given settings, but they are apparently off-target. The proposed method has a tradeoff between
target achievement and variance reduction. The tradeoff is important in our case because uniformity of nanotubes is more
desirable compared to a small target deviation. The comparison of different set values can also be seen visually in Figure 4.
The vertical axis of Figure 4 shows the distribution of the average heights across the whole profile. At the optimal controllable
setting, which is marked with red dotted line, the distribution of the average heights has the smallest variation, and the average
height is close to the target height. Although there are some controllable settings that stay closer to the target height, the output
has a larger variation.

Through the analysis previously, we can see that the proposed method produces a solution that has low deviation from
the target and a small variation. The quality of nanotube profiles at the optimal controllable factor settings is robust to the
variation of the observable but uncontrollable factor. Therefore, the proposed method is effective at improving the
robustness of profile quality in a process where there are noise factors, and the noise factors have interactions with
controllable factors.
Table II. Study of the effect of factor C

Factor C
Average
height

Average standard deviation
(SD)

Target
deviation

Coverage percentage
of

(0.294 and 0.306)

900 0.29386 0.000762 0.003826 40%
1000 0.29793 0.000504 0.000456 100%
1100 0.30199 0.000245 0.000402 100%
1136.4* 0.30347* 0.000151* 0.001206* 100%*
1200 0.30605 0.000013 0.003665 0
1300 0.31012 0.000271 0.010244 0
1400 0.31418 0.000530 0.020141 0

Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2016, 32 1059–1070
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5. Conclusion

In this work, we propose a new method of robust parameter design for profiles. A hierarchical model is built for profiles where spatial
correlation of the measurement points is characterized with Kriging technique. Then, we optimize processes by minimizing a
quadratic loss function, which is defined as the sum of the squared deviations between the predicted responses and the target value.
Compared with previous methods, the proposed method has the following features: first, spatial correlation is considered in the
model and the optimization procedures; second, the model is built hierarchically, which makes the model meaningful and easy to
interpret. The application of the method to the production of CNTs proves that the proposed method is effective on quality
improvement of profiles. Through the proposed robust parameter design method, a desired shape of profiles that is insensitive to
the variation caused by noise factors can be achieved.

When output quality is characterized by profiles, robust parameter design is helpful for off-line optimization of process variables.
While for a process that is in a running status, online optimization of process variables becomes important. Therefore, online control
and the integration of robust parameter design with online control for profile quality improvement are important topics that deserve
more future research efforts.
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Appendix

The appendix gives details of the optimization process of the objective function in Equation (10). Here, we give a general case where
there are controllable factors and observable factors in a process. The vector of observable factors follows a distribution with mean μe
and covariance matrix Σe.

For simplification, we denote that

γ ijð Þ
10 ¼ β̂30 þ β̂10sij

2; γ ijð Þ
13 ¼ β̂33 þ β̂13sij

2; γ ijð Þ
11 ¼ β̂31 þ β̂11sij

2; G ijð Þ
1 ¼ B̂31 þ B̂11sij2

γ ijð Þ
20 ¼ β̂30 þ β̂20sij

2; γ ijð Þ
23 ¼ β̂33 þ β̂23sij

2; γ ijð Þ
21 ¼ β̂31 þ β̂21sij

2; and G ijð Þ
2 ¼ B̂31 þ B̂21sij2

When sij< 0, the expected response in Equation (10) is

Ee;z;v;ε yij

� �
¼ Ee;z;v;ε β30 þ βT31xþ βT33eþ xTB31eþ vi3

� �þ β10 þ βT11xþ βT13eþ xTB11eþ vi1
� �

sij2 þ zij þ εij
 �

¼ β̂30 þ β̂T
31xþ βT33μe þ xT B̂31μe

� �
þ β̂10 þ β̂T

11xþ β̂T
13μe þ xT B̂11μe

� �
sij2

¼ γ ijð Þ
10 þ γ ijð Þ

11

� �T
xþ γ ijð Þ

13

� �T
μe þ xTG ijð Þ

1 μe

(A1)

The variance of response in Equation (10) can be expressed as the sum of two parts, shown in Equation (A3).

Vare;z;v;ε yij

� �
¼ Ee Varz;v;ε yij

� �h i
þ Vare Ez;v;ε yij

� �h i
(A2)

Then, we calculate the two parts separately, shown in Equations (A3) and (A4), respectively.

Vare Ez;v;ε yij

� �h i
¼ Vare Ez;v;ε β30 þ βT31xþ βT33eþ xTB31eþ vi3

� � þ β10 þ βT11xþ βT13eþ xTB11eþ vi1
� �

sij2 þ zij þ εij
 �� �

¼ Vare β̂30 þ β̂T
31xþ β̂T

33eþ xT B̂31e
� �

þ β̂10 þ β̂T
11xþ β̂T

13eþ xT B̂11e
� �

sij2
h i

¼ Vare β̂T
33eþ xT B̂31e

� �þ β̂T
13eþ xT B̂11e

� �
sij2

 �
¼ β̂33 þ B̂31

T
x

� �
þ β̂13 þ B̂11

T
x

� �
sij2

h iT
Σe β̂33 þ B̂31

T
x

� �
þ β̂13 þ B̂11

T
x

� �
sij2

h i

¼ γ ijð Þ
13 þ G ijð Þ

1

� �T
x

� �T
Σe γ ijð Þ

13 þ G ijð Þ
1

� �T
x

� �

(A3)

Ee Varz;v;ε yij

� �h i
¼ Ee Varz;v;ε β30 þ βT31xþ βT33eþ xTB31eþ vi3

� � þ β10 þ βT11xþ βT13e þ xTB11eþ vi1
� �

sij2 þ zij þ εij
 �� �

¼ Ee Varz;v;ε vi3 þ vi1sij2 þ zij þ εij
� � �

¼ sij2 0 1
� �

Σvi sij2 0 1
� �T þ σz2 þ σε2

(A4)

Using the same methods, we can obtain the expectation and variation of responses when sij ≥ 0.
Then, the objective function shown in Equation (10) is written as

O xð Þ ¼∑N

i¼1∑j; si<0 Ee;z;v;ε yij

� �
� τ

h i2
þ Vare;z;v;ε yij

� �� 	

þ∑N

i¼1∑j; sj≥0
Ee;z;v;ε yij

� �
� τ

h i2
þ Vare;z;v;ε yij

� �� 	

¼∑N

i¼1∑j; si<0

�
γ ijð Þ
10 þ γ ijð Þ

11

� �T
xþ γ ijð Þ

13

� �T
μe þ xTG ijð Þ

1 μe � τ
� �2

þ γ ijð Þ
13 þ G ijð Þ

1

� �T
x

� �T
Σe γ ijð Þ

13 þ G ijð Þ
1

� �T
x

� �
þ sij2 0 1
� �

Σvi sij2 0 1
� �T þ σz2 þ σε2

	

þ∑N

i¼1∑j; sj≥0

�
γ ijð Þ
20 þ γ ijð Þ

21

� �T
xþ γ ijð Þ

23

� �T
μe þ xTG ijð Þ

2 μe � τ
� �2

þ γ ijð Þ
23 þ G ijð Þ

2

� �T
x

� �T
Σe γ ijð Þ

23 þ G ijð Þ
2

� �T
x

� �
þ 0 sij2 1
� �

Σvi 0 sij2 1
� �T þ σz2 þ σε2

	

(A5)
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Then, the differential of the objective function is given as in Equation (A6).

d O xð Þ
d x

¼∑N

i¼1∑j; si<02 γ ijð Þ
11 þ G ijð Þ

1 μe

� �
γ ijð Þ
10 þ γ ijð Þ

13

� �T
μe þ γ ijð Þ

11 þ G ijð Þ
1 μe

� �T
x� τ

� �

þ∑N

i¼1∑j; si<02G
ijð Þ
1 Σe γ ijð Þ

13 þ G ijð Þ
1

� �T
x

� �

þ∑N

i¼1∑j; sj≥0
2 γ ijð Þ

21 þ G ijð Þ
2 μe

� �
γ ijð Þ
20 þ γ ijð Þ

23

� �T
μe þ γ ijð Þ

21 þ G ijð Þ
2 μe

� �T
x� τ

� �

þ∑N

i¼1∑j; sj≥0
2G ijð Þ

2 Σe γ ijð Þ
23 þ G ijð Þ

2

� �T
x

� �
(A6)

By forcing the differential to 0, we obtain the optimal solution of the controllable factors as follows

x ¼ �
�
∑N

i¼1∑j; si<0 γ ijð Þ
11 þ G ijð Þ

1 μe

� �
γ ijð Þ
11 þ G ijð Þ

1 μe

� �T
þ G ijð Þ

1 Σe G ijð Þ
1

� �T
� �

þ∑N

i¼1∑j; sj≥0
γ ijð Þ
21 þ G ijð Þ

2 μe

� �
γ ijð Þ
21 þ G ijð Þ

2 μe

� �T
þ G ijð Þ

2 Σe G ijð Þ
2

� �T
� �	

�1

�
�
∑N

i¼1∑j; si<0 γ ijð Þ
11 þ G ijð Þ

1 μe

� �
γ ijð Þ
10 þ γ ijð Þ

13

� �T
μe � τ

� �
þ G ijð Þ

1 Σeγ
ijð Þ
13

þ∑N

i¼1∑j; sj≥0
γ ijð Þ
21 þ G ijð Þ

2 μe

� �
γ ijð Þ
20 þ γ ijð Þ

23

� �T
μe � τ

� �
þ G ijð Þ

2 Σeγ
ijð Þ
23

	
(A7)

Denoting that

A ijð Þ
k ¼ γ ijð Þ

k1 þ G ijð Þ
k μe

� �
γ ijð Þ
k1 þ G ijð Þ

k μe

� �T þ G ijð Þ
k Σe G ijð Þ

k

� �T
and

k ijð Þ
d ¼ γ ijð Þ

k1 þ γ ijð Þ
k1 μe

� �
γ ijð Þ
k0 þ γ ijð Þ

k3

� �T
μe � τ


 �
þ G ijð Þ

k Σeγ
ijð Þ
k3

we can get

x ¼ � ∑N
i¼1∑j; si < 0A

ijð Þ
1 þ ∑N

i¼1∑j; sj ≥ 0A
ijð Þ
2

� ��1
� ∑N

i¼1∑j; si< 0d
ijð Þ
1 þ ∑N

i¼1∑j; sj ≥ 0d
ijð Þ
2

� �
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